Update: sarcopenia
DOI:
https://doi.org/10.17267/2238-2704rpf.v11i4.4139Keywords:
Sarcopenia, Body composition, Muscular strengthAbstract
OBJECTIVES: To update on a sarcopenia literature review published in 2014 in this journal. According to the Working Group on Sarcopenia in Older People Consensus (EWGSOP2), sarcopenia was redefined as a muscular disease, characterized by muscular strength reduction, associated to a diminished muscular quantity and /or quality and /or a low physical performance, being stratified as primary, secondary acute and chronic. Beyond physical consequences as falls risk and daily living activities, sarcopenia can promote a dysbalance between protein synthesis and degradation. Sarcopenia prevalence is higher with increasing age, especially after 60 years. Studies in six countries had found sarcopenia prevalence between 4.6% and 22.1%, but differences between definitions, diagnostic methods and cutoff points to evaluate muscle mass and function are found. To improve sarcopenia risk detection, EWGSOP2 suggests the use of the SARC-F questionnaire. Muscle mass measurement recommended methods are Magnet Ressonance Imaging, Computed Tomography, Double Energy X-Ray Absorptiometry, Eletric Bioimpedance and Anthropometry with variable accuracy and costs between these methods. To evaluate muscle strength, handgrip strength test is the main method recommended. Four Meter Gait speed is recommended to evaluate physical performance. Treatment options are progressive exercise endurance trainings and aerobic exercises, together with nutritional interventions. Sedentary lifestyle, obesity and frailty are the main risks factors associated to muscle mass and function losses in the clinical setting.Downloads
References
Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. https://doi.org/10.1093/ageing/afy169
Morley JE, Abbatecola AM, Argiles JM, Baracos V, Bauer J, Bhasin S, et al. Sarcopenia With Limited Mobility: An International Consensus. J Am Med Dir Assoc. 2011;12(6):403–9. https://doi.org/10.1016/j.jamda.2011.04.014
Malmstrom TK, Miller DK, Simonsick EM, Ferrucci L, Morley JE. SARC-F: A symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J Cachexia Sarcopenia Muscle. 2016;7(1):28–36. https://doi.org/10.1002/jcsm.12048
Bahat G, Ilhan B. Sarcopenia and the cardiometabolic syndrome: A narrative review. Eur Geriatr Med. 2016;7(3):220–3. https://doi.org/10.1016/j.eurger.2015.12.012
Bone AE, Hepgul N, Kon S, Maddocks M. Sarcopenia and frailty in chronic respiratory disease: Lessons from gerontology. Chron Respir Dis. 2017;14(1):85–99. https://doi.org/10.1177/1479972316679664
Chang KV, Hsu TH, Wu WT, Huang KC, Han DS. Association Between Sarcopenia and Cognitive Impairment: A Systematic Review and Meta-Analysis. J Am Med Dir Assoc. 2016;17(12):1164.e7-1164.e15. https://doi.org/10.1016/j.jamda.2016.09.013
Beaudart C, Reginster JY, Geerinck A, Locquet M, Bruyère O. Current review of the SarQoL®: a health-related quality of life questionnaire specific to sarcopenia. Expert Rev Pharmacoeconomics Outcomes Res. 2017;17(4):335–41. https://doi.org/10.1080/14737167.2017.1360768
Steffl M, Bohannon RW, Sontakova L, Tufano JJ, Shiells K, Holmerova I. Relationship-between-sarcopenia-and-physical-activity-in-the. Clin Interv Aging. 2017;12:835–45. https://doi.org/10.2147/CIA.S132940
Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M, et al. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol. 2012;3:260. https://doi.org/10.3389/fphys.2012.00260
Martinez BP, Camelier FWR, Camelier AA. Sarcorpenia in the elderly: a study review. Rev Pesq Fisioter. 2014;2(1):62–70. https://doi.org/10.17267/2238-2704rpf.v4i1.349
Rom O, Kaisari S, Aizenbud D, Reznick AZ. Lifestyle and Sarcopenia – Etiology, Prevention and Treatment. Rambam Maimonides Med J. 2012;3(4):e0024. https://doi.org/10.5041/RMMJ.10091
Pedersen BK. The diseasome of physical inactivity - and the role of myokines in muscle-fat cross talk. J Physiol. 2009;587(23):5559–68. https://doi.org/10.1113/jphysiol.2009.179515
Newman AB, Kupelian V, Visser M, Simonsick EM, Goodpaster BH, Kritchevsky SB, et al. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. Gerontologist. 2006;61(1):72–7. https://doi.org/10.1093/gerona/61.1.72
Shimokata H, Shimada H, Satake S, Endo N, Shibasaki K, Ogawa S, et al. Chapter 2 Epidemiology of sarcopenia. Geriatr Gerontol Int. 2018;18(S1):13–22. https://doi.org/10.1111/ggi.13320
Morley JE, Anker SD, von Haehling S. Prevalence, incidence, and clinical impact of sarcopenia: facts, numbers, and epidemiology—update 2014. J Cachexia Sarcopenia Muscle. 2014;5(4):253–9. https://doi.org/10.1007/s13539-014-0161-y
Diz JBM, Queiroz BZ, Tavares LB, Pereira LSB. Prevalence of sarcopenia among the elderly: findings from broad cross-sectional studies in a range of countries. Rev Bras Geriatr Gerontol. 2015;18(3):665–78. https://doi.org/10.1590/1809-9823.2015.14139
Alexandre TS, Duarte YAO, Santos JLF, Lebrão ML. Prevalence and associated factors of sarcopenia, dynapenia, and sarcodynapenia in community-dwelling elderly in São Paulo - SABE Study. Rev Bras Epidemiol. 2018;21(Suppl 2):e180009. https://doi.org/10.1590/1980-549720180009.supl.2
Confortin SC, Ono LM, Barbosa AR, D’orsi E. Sarcopenia and its association with changes in socioeconomic, behavioral, and health factors: the EpiFloripa Elderly Study. Cad Saude Publica. 2018;34(12):e00164917. https://doi.org/10.1590/0102-311X00164917
Moreira VG, Perez M, Lourenço RA. Prevalence of sarcopenia and its associated factors: The impact of muscle mass, gait speed, and handgrip strength reference values on reported frequencies. Clinics. 2019;74(7): e477. https://doi.org/10.6061/clinics/2019/e477
Zhang X, Xie X, Dou Q, Liu C, Zhang W, Yang Y, et al. Association of sarcopenic obesity with the risk of all-cause mortality among adults over a broad range of different settings: A updated meta-analysis. BMC Geriatr. 2019;19(1):183. https://doi.org/10.1186/s12877-019-1195-y
Reis MM, Arantes PMM. Assessment of hand grip strength- validity and reliability of the saehan dynamometer. Fisioter Pesq. 2011;18(2):176–81. https://doi.org/10.1590/S1809-29502011000200013
Francis P, Toomey C, Mc Cormack W, Lyons M, Jakeman P. Measurement of maximal isometric torque and muscle quality of the knee extensors and flexors in healthy 50- to 70-year-old women. Clin Physiol Funct Imaging. 2017;37(4):448–55. https://doi.org/10.1111/cpf.12332
Masanés F, Luque XR, Salvà A, Serra-Rexach JA, Artaza I, Formiga F, et al. Cut-off points for muscle mass — not grip strength or gait speed — determine variations in sarcopenia prevalence. J Nutr Health Aging. 2017;21(7):825–9. https://doi.org/10.1007/s12603-016-0844-5
Buckinx F, Landi F, Cesari M, Fielding RA, Visser M, Engelke K, et al. Pitfalls in the measurement of muscle mass: a need for a reference standard. J Cachexia Sarcopenia Muscle. 2018;9(2):269–78. https://doi.org/10.1002/jcsm.12268
Kim KM, Jang HC, Lim S. Differences among skeletal muscle mass indices derived from height-, weight-, and body mass index-adjusted models in assessing sarcopenia. Korean J Intern Med. 2016;31(4):643–50. https://doi.org/10.3904/kjim.2016.015
Thomas DR. Sarcopenia. Clin Geriatr Med. 2010;26(2):331–46. https://doi.org/10.1016/j.cger.2010.02.012
Tosato M, Marzetti E, Cesari M, Savera G, Miller RR, Bernabei R, et al. Measurement of muscle mass in sarcopenia: from imaging to biochemical markers. Aging Clin Exp Res. 2017;29(1):19–27. https://doi.org/10.1007/s40520-016-0717-0
Lee RC, Wang Z, Heo M, Ross R, Janssen I, Heymsfield SB. Total-body skeletal muscle mass: development and cross-validation of anthropometric prediction models. Am. J. Clin. Nutr. 2000;72(3):796–803. https://doi.org/10.1093/ajcn/72.3.796
Rech CR, Dellagrana RA, Marucci MFN, Petroski EL. Validity of anthropometric equations for the estimation of muscle mass in the elderly. Rev Bras Cineantropom Desempenho Hum. 2012;14(1):23–31. https://doi.org/10.1590/1980-0037.2012v14n1p23
Wielopolski L, Ramirez LM, Gallagher D, Heymsfield SB, Wang ZM. Measuring partial body potassium in the arm versus total body potassium. J Appl Physiol. 2006;101(3):945–9. https://doi.org/10.1152/japplphysiol.00999.2005
Beaudart C, Rolland Y, Cruz-Jentoft AJ, Bauer JM, Sieber C, Cooper C, et al. Assessment of Muscle Function and Physical Performance in Daily Clinical Practice: A position paper endorsed by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Calcif Tissue Int. 2019;105(1):1-14. https://doi.org/10.1007/s00223-019-00545-w
Dodds RM, Syddall HE, Cooper R, Benzeval M, Deary IJ, Dennison EM, et al. Grip strength across the life course: Normative data from twelve British studies. PLoS One. 2014;9(12):e113637. https://doi.org/10.1371/journal.pone.0113637
Cesari M, Kritchevsky SB, Newman AB, Simonsick EM, Harris TB, Penninx BW, et al. Added value of physical performance measures in predicting adverse health-related events: results from the Health, Aging and Body Composition Study. J Am Geriatr Soc. 2009;57(2):251–9. https://doi.org/10.1111/j.1532-5415.2008.02126.x
Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, et al. The FNIH Sarcopenia Project: Rationale, Study Description, Conference Recommendations, and Final Estimates. Gerontologist. 2014;69(5):547–58. https://doi.org/10.1093/gerona/glu010
Gould H, Brennan SL, Kotowicz MA, Nicholson GC, Pasco JA. Total and Appendicular Lean Mass Reference Ranges for Australian Men and Women: The Geelong Osteoporosis Study. Calcif. 2014;94(4):363-72. https://doi.org/10.1007/s00223-013-9830-7
Distefano G, Standley RA, Zhang X, Carnero EA, Yi F, Cornnell HH, et al. Physical activity unveils the relationship between mitochondrial energetics, muscle quality, and physical function in older adults. J Cachexia Sarcopenia Muscle. 2018;9(2):279-94. https://doi.org/10.1002/jcsm.12272
Ruan XY, Gallagher D, Harris T, Albu J, Heymsfield S, Kuznia P, et al. Estimating whole body intermuscular adipose tissue from single cross-sectional magnetic resonance images. J Appl Physiol. 2007;102(2):748–54. https://doi.org/10.1152/japplphysiol.00304.2006
Woo J, Leung J, Morley JE. Defining Sarcopenia in Terms of Incident Adverse Outcomes. J Am Med Dir Assoc. 2015;16(3):247–52. https://doi.org/10.1016/j.jamda.2014.11.013
Bahat G, Yilmaz O, Kiliç C, Oren MM, Karan MA. Performance of SARC-F in Regard to Sarcopenia Definitions, Muscle Mass and Functional Measures. J Nutr Health Aging. 2018;22(8):898–903. https://doi.org/10.1007/s12603-018-1067-8
Taaffe DR, Duret C, Wheeler S, Marcus R. Once-weekly resistance exercise improves muscle strength and neuromuscular performance in older adults. J Am Geriatr Soc. 1999;47(10):1208–14. https://doi.org/10.1111/j.1532-5415.1999.tb05201.x
Mangione KK, Miller AH, Naughton IV. Cochrane review: Improving physical function and performance with progressive resistance strength training in older adults. Phys Ther. 2010;90(12):1711–5. https://doi.org/10.2522/ptj.20100270
Power GA, Dalton BH, Behm DG, Doherty TJ, Vandervoort AA, Rice CL. Motor unit survival in lifelong runners is muscle dependent. Med Sci Sports Exerc. 2012;44(7):1235–42. https://doi.org/10.1249/MSS.0b013e318249953c
Timmerman KL, Dhanani S, Glynn EL, Fry CS, Drummond MJ, Jennings K, et al. A moderate acute increase in physical activity enhances nutritive flow and the muscle protein anabolic response to mixed nutrient intake in older adults. Am J Clin Nutr. 2012;95(6):1403–12. https://doi.org/10.3945/ajcn.111.020800
Akune T, Muraki S, Oka H, Tanaka S, Kawaguchi
H, Nakamura K, et al. Exercise habits during middle age are associated with lower prevalence of sarcopenia: The ROAD study. Osteoporos Int. 2014;25(3):1081–8. https://doi.org/10.1007/s00198-013-2550-z
Liu CK, Leng X, Hsu FC, Kritchevsky SB, Ding J, Earnest CP, et al. The impact of sarcopenia on a physical activity intervention: The lifestyle interventions and independence for elders pilot study (LIFE-P). J Nutr Health Aging [Internet]. 2014;18(1):59–64. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111145/
Margutti KMM, Schuch NJ, Schwanke CHA. Inflammatory markers, sarcopenia and its diagnostic criteria among the elderly: a systematic review. Rev bras geriatr gerontol. 2017;20(3):441–53. https://doi.org/10.1590/1981-22562017020.160155
Ganapathy A, Nieves JW. Nutrition and sarcopenia—What do we know? Nutrients. 2020;12(6):1755. https://doi.org/10.3390/nu12061755
Makanae Y, Fujita S. Role of exercise and nutrition in the prevention of sarcopenia. J Nutr Sci Vitaminol. 2015;61:S125–7. https://doi.org/10.3177/jnsv.61.S125
Morley JE, Malmstrom TK. Frailty, Sarcopenia, and Hormones. Endocrinol Metab Clin North Am. 2013;42(2):391–405. http://dx.doi.org/10.1016/j.ecl.2013.02
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Bruno Prata Martinez, Fernanda Warken Rosa Camelier , Nívia Giullia de Sales e Santos, Laís Vasconcelos Martins da Costa , Lindanor Gomes Santana Neta, Joselita Moura Sacramento, Aquiles Assunção Camelier
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.