Patients with temporomandibular disorders and chronic pain of myofascial origin display reduced alpha power density and altered small-world properties of brain networks

Authors

DOI:

https://doi.org/10.17267/2965-3738bis.2024.e5648

Keywords:

Temporomandibular Disorders, Chronic Pain, Electroencephalography, Imagery, Connectivity

Abstract

BACKGROUND: Chronic pain is one of the most common symptoms of temporomandibular disorders (TMD). Although its pathophysiology is still a challenge, TMD has been associated with changes in central nervous system activity related to pain modulatory capacity. OBJECTIVE: To assess the cortical activity of patients with temporomandibular disorders and chronic pain of myofascial origin using quantitative electroencephalography (qEEG) in different mental states. METHOD: This study consists of a cross-sectional study. Individuals with TMD and chronic pain and healthy controls were evaluated using qEEG in four consecutive conditions, all with closed eyes: 1) initial resting condition; 2) non-painful motor imagery task of hand movement; 3) painful motor imagery task of clenching the teeth; 4) final resting condition. RESULTS: Participants with TMD and chronic pain overall presented decreased alpha power density during baseline at rest, non-painful and painful motor imagery tasks when compared to healthy controls. Furthermore, functional brain connectivity was distinct between groups, with TMD and chronic pain showing lower small-world values for the delta (all conditions), theta (painful and non-painful motor imagery task), and alpha bands (painful motor imagery task), and an increase in the beta band (all conditions). CONCLUSION: These results suggest that TMD and chronic pain could be associated with maladaptive plasticity in the brain, which may correspond to a reduced ability to modify brain activity during different mental tasks, including painful and non-painful motor imagery.

Author Biography

  • Abrahão Baptista, Universidade Federal do ABC (Santo André). São Paulo, Brazil.

    Lattes.cnpq.br/3079253830583385 ORCID - 0000-0001-7870-3820

References

(1) Carrara SV, Conti PCR, Barbosa JS. Statement of the 1st Consensus on Temporomandibular Disorders and Orofacial Pain. Dental Press J Orthod. 2010;15(3):114–20. https://doi.org/10.1590/S2176-94512010000300014 DOI: https://doi.org/10.1590/S2176-94512010000300014

(2) Greene CS, Klasser GD, Epstein JB. Revision of the American Association of Dental Research’s Science Information Statement about Temporomandibular Disorders. J Can Dent Assoc. 2010;76:a115. PMID: 20943030

(3) Dworkin SF, Huggins KH, LeResche L, Von Korff M, Howard J, Truelove E, et al. Epidemiology of signs and symptoms in temporomandibular disorders: clinical signs in cases and controls. J Am Dent Assoc. 1990;120(3):273–81. https://doi.org/10.14219/jada.archive.1990.0043 DOI: https://doi.org/10.14219/jada.archive.1990.0043

(4) Gesch D, Bernhardt O, Alte D, Schwahn C, Kocher T, John U, et al. Prevalence of signs and symptoms of temporomandibular disorders in an urban and rural German population: results of a population-based Study of Health in Pomerania. Quintessence Int [Internet]. 2004;35(2). Available from: http://www.quintpub.com/userhome/qi/qi_35_2_gesch_9.pdf

(5) Gonçalves DG, Dal Fabbro AL, Campos JADB, Bigal ME, Speciali JG. Symptoms of temporomandibular disorders in the population: an epidemiological study. J Orofac Pain [Internet]. 2010;24(3). Available from: https://www.researchgate.net/profile/Daniela_Goncalves/publication/45389766_Symptoms_of_Temporomandibular_Disorders_in_the_Population_An_Epidemiological_Study/links/54199e110cf25ebee988777c.pdf

(6) Ferreira CLP, Silva MAMR, Felício CM. Signs and symptoms of temporomandibular disorders in women and men. CoDAS. 2016;28(01):17–21. http://dx.doi.org/10.1590/2317-1782/20162014218 DOI: https://doi.org/10.1590/2317-1782/20162014218

(7) Dahan H, Shir Y, Velly A, Allison P. Specific and number of comorbidities are associated with increased levels of temporomandibular pain intensity and duration. J Headache Pain. 2015;16:528. https://doi.org/10.1186/s10194-015-0528-2 DOI: https://doi.org/10.1186/s10194-015-0528-2

(8) Visscher CM, van Wesemael-Suijkerbuijk EA, Lobbezoo F. Is the experience of pain in patients with temporomandibular disorder associated with the presence of comorbidity? Eur J Oral Sci. 2016;124(5):459–64. https://doi.org/10.1111/eos.12295 DOI: https://doi.org/10.1111/eos.12295

(9) Tchivileva IE, Ohrbach R, Fillingim RB, Greenspan JD, Maixner W, Slade GD. Temporal change in headache and its contribution to the risk of developing first-onset temporomandibular disorder in the Orofacial Pain. PAIN. 2017;158(1):120–9. http://dx.doi.org/10.1097/j.pain.0000000000000737 DOI: https://doi.org/10.1097/j.pain.0000000000000737

(10) Lin CS. Brain signature of chronic orofacial pain: a systematic review and meta-analysis on neuroimaging research of trigeminal neuropathic pain and temporomandibular joint disorders. PLoS One. 2014;9(4):e94300. https://doi.org/10.1371/journal.pone.0094300 DOI: https://doi.org/10.1371/journal.pone.0094300

(11) Lorduy KM, Liegey-Dougall A, Haggard R, Sanders CN, Gatchel RJ. The prevalence of comorbid symptoms of central sensitization syndrome among three different groups of temporomandibular disorder patients. Pain Pract. 2013;13(8):604–13. https://doi.org/10.1111/papr.12029 DOI: https://doi.org/10.1111/papr.12029

(12) Harper DE, Schrepf A, Clauw DJ. Pain Mechanisms and Centralized Pain in Temporomandibular Disorders. J Dent Res. 2016;95(10):1102–8. https://doi.org/10.1177/0022034516657070 DOI: https://doi.org/10.1177/0022034516657070

(13) Nickel MM, May ES, Tiemann L, Schmidt P, Postorino M, Ta Dinh S, et al. Brain oscillations differentially encode noxious stimulus intensity and pain intensity. Neuroimage. 2017;148:141–7. https://doi.org/10.1016/j.neuroimage.2017.01.011 DOI: https://doi.org/10.1016/j.neuroimage.2017.01.011

(14) Pinheiro ESS, Queirós FC, Montoya P, Santos CL, Nascimento MA, Ito CH, et al. Electroencephalographic Patterns in Chronic Pain: A Systematic Review of the Literature. PLOS ONE. 2016;11(2):e0149085. http://dx.doi.org/10.1371/journal.pone.0149085 DOI: https://doi.org/10.1371/journal.pone.0149085

(15) Meneses FM, Queirós FC, Montoya P, Miranda JGV, Dubois-Mendes SM, Sá KN, et al. Patients with Rheumatoid Arthritis and Chronic Pain Display Enhanced Alpha Power Density at Rest. Frontiers in Human Neuroscience. 2016;10. http://dx.doi.org/10.3389/fnhum.2016.00395 DOI: https://doi.org/10.3389/fnhum.2016.00395

(16) de Vries M, Wilder-Smith OH, Jongsma MLA, van den Broeke EN, Arns M, van Goor H, et al. Altered resting state EEG in chronic pancreatitis patients: toward a marker for chronic pain. J Pain Res. 2013;6:815–24. https://doi.org/10.2147/JPR.S50919 DOI: https://doi.org/10.2147/JPR.S50919

(17) Boord P, Siddall PJ, Tran Y, Herbert D, Middleton J, Craig A. Electroencephalographic slowing and reduced reactivity in neuropathic pain following spinal cord injury. Spinal Cord. 2008;46:118–23. http://dx.doi.org/10.1038/sj.sc.3102077 DOI: https://doi.org/10.1038/sj.sc.3102077

(18) Sarnthein J, Stern J, Aufenberg C, Rousson V, Jeanmonod D. Increased EEG power and slowed dominant frequency in patients with neurogenic pain. Brain. 2006;129(1):55–64. http://dx.doi.org/10.1093/brain/awh631 DOI: https://doi.org/10.1093/brain/awh631

(19) Dinh ST, Nickel MM, Tiemann L, May ES, Heitmann H, Hohn VD, et al. Brain dysfunction in chronic pain patients assessed by resting-state electroencephalography. Pain. 2019;160:2751–65. http://dx.doi.org/10.1097/j.pain.0000000000001666 DOI: https://doi.org/10.1097/j.pain.0000000000001666

(20) Yin Y, He S, Xu J, You W, Li Q, Long J, et al. The neuro-pathophysiology of temporomandibular disorders-related pain: a systematic review of structural and functional MRI studies. J Headache Pain. 2020;21(1):78. https://doi.org/10.1186/s10194-020-01131-4 DOI: https://doi.org/10.1186/s10194-020-01131-4

(21) Alonso AA, Koutlas IG, Leuthold AC, Lewis SM, Georgopoulos AP. Cortical processing of facial tactile stimuli in temporomandibular disorder as revealed by magnetoencephalography. Experimental Brain Research. 2010;204:33–45. http://dx.doi.org/10.1007/s00221-010-2291-6 DOI: https://doi.org/10.1007/s00221-010-2291-6

(22) Nebel MB, Folger S, Tommerdahl M, Hollins M, McGlone F, Essick G. Temporomandibular disorder modifies cortical response to tactile stimulation. J Pain. 2010;11(11):1083–94. https://doi.org/10.1016/j.jpain.2010.02.021 DOI: https://doi.org/10.1016/j.jpain.2010.02.021

(23) Di Pietro F, Macey PM, Rae CD, Alshelh Z, Macefield VG, et al. The relationship between thalamic GABA content and resting cortical rhythm in neuropathic pain. Human Brain Mapping. 2018;39:1945–56. http://dx.doi.org/10.1002/hbm.23973 DOI: https://doi.org/10.1002/hbm.23973

(24) Baroni A, Severini G, Straudi S, Buja S, Borsato S, Basaglia N. Hyperalgesia and Central Sensitization in Subjects With Chronic Orofacial Pain: Analysis of Pain Thresholds and EEG Biomarkers. Front Neurosci. 2020;14:552650. https://doi.org/10.3389/fnins.2020.552650 DOI: https://doi.org/10.3389/fnins.2020.552650

(25) Corbett DB, Simon CB, Manini TM, George SZ, Riley JL III, Fillingim RB. Movement-evoked pain. Pain. 2018 Oct;1. http://doi.org/10.1097/j.pain.0000000000001431. DOI: https://doi.org/10.1097/00006396-900000000-98824

(26) Wang WE, Ho RLM, Ribeiro-Dasilva MC, Fillingim RB, Coombes SA. Chronic jaw pain attenuates neural oscillations during motor-evoked pain. Brain Res. 2020;1748:147085. https://doi.org/10.1016/j.brainres.2020.147085 DOI: https://doi.org/10.1016/j.brainres.2020.147085

(27) Case LK, Pineda J, Ramachandran VS. Common coding and dynamic interactions between observed, imagined, and experienced motor and somatosensory activity. Neuropsychologia. 2015;79(Pt B):233–45. https://doi.org/10.1016/j.neuropsychologia.2015.04.005 DOI: https://doi.org/10.1016/j.neuropsychologia.2015.04.005

(28) Fardo F, Allen M, Jegindø EME, Angrilli A, Roepstorff A. Neurocognitive evidence for mental imagery-driven hypoalgesic and hyperalgesic pain regulation. NeuroImage. 2015;15:350–61. http://dx.doi.org/10.1016/j.neuroimage.2015.07.008 DOI: https://doi.org/10.1016/j.neuroimage.2015.07.008

(29) Moseley GL, Zalucki N, Birklein F, Marinus J, van Hilten JJ, Luomajoki H. Thinking about movement hurts: the effect of motor imagery on pain and swelling in people with chronic arm pain. Arthritis Rheum. 2008;59(5):623–31. https://doi.org/10.1002/art.23580 DOI: https://doi.org/10.1002/art.23580

(30) Shamsi F, Haddad A, Zadeh LN. Recognizing Pain in Motor Imagery EEG Recordings Using Dynamic Functional Connectivity Graphs. Conf Proc IEEE Eng Med Biol Soc. 2020;2020:2869–72. https://doi.org/10.1109/EMBC44109.2020.9175627 DOI: https://doi.org/10.1109/EMBC44109.2020.9175627

(31) Bassett DS, Bullmore E. Small-world brain networks. Neuroscientist. 2006;12(6):512–23. https://doi.org/10.1177/1073858406293182 DOI: https://doi.org/10.1177/1073858406293182

(32) Kuner R, Flor H. Structural plasticity and reorganisation in chronic pain. Nat Rev Neurosci. 2016;18:20–30. https://doi.org/10.1038/nrn.2016.162 DOI: https://doi.org/10.1038/nrn.2016.162

(33) Watts DJ, Strogatz SH. Collective dynamics of “small-world” networks. Nature. 1998;393:440–2. http://dx.doi.org/10.1038/30918 DOI: https://doi.org/10.1038/30918

(34) Liu J, Zhang F, Liu X, Zhuo Z, Wei J, Du M, et al. Altered small-world, functional brain networks in patients with lower back pain. Sci China Life Sci. 2018;61(11):1420–4. https://doi.org/10.1007/s11427-017-9108-6 DOI: https://doi.org/10.1007/s11427-017-9108-6

(35) Zhang Y, Liu J, Li L, Du M, Fang W, Wang D, et al. A study on small-world brain functional networks altered by postherpetic neuralgia. Magn Reson Imaging. 2014;32(4):359–65. https://doi.org/10.1016/j.mri.2013.12.016 DOI: https://doi.org/10.1016/j.mri.2013.12.016

(36) Mills EP, Akhter R, Di Pietro F, Murray GM, Peck CC, Macey PM, et al. Altered Brainstem Pain Modulating Circuitry Functional Connectivity in Chronic Painful Temporomandibular Disorder. J Pain. 2021;22(2):219–32. https://doi.org/10.1016/j.jpain.2020.08.002 DOI: https://doi.org/10.1016/j.jpain.2020.08.002

(37) Festa F, Rotelli C, Scarano A, Navarra R, Caulo M, Macrì M. Functional Magnetic Resonance Connectivity in Patients With Temporomadibular Joint Disorders. Front Neurol. 2021;12:629211. https://doi.org/10.3389/fneur.2021.629211 DOI: https://doi.org/10.3389/fneur.2021.629211

(38) He S, Li F, Gu T, Ma H, Li X, Zou S, et al. Reduced corticostriatal functional connectivity in temporomandibular disorders. Hum Brain Mapp. 2018;39(6):2563–72. https://doi.org/10.1002/hbm.24023 DOI: https://doi.org/10.1002/hbm.24023

(39) Berni KCDS, Dibai-Filho AV, Rodrigues-Bigaton D. Accuracy of the Fonseca anamnestic index in the identification of myogenous temporomandibular disorder in female community cases. J Bodyw Mov Ther. 2015;19(3):404–9. https://doi.org/10.1016/j.jbmt.2014.08.001 DOI: https://doi.org/10.1016/j.jbmt.2014.08.001

(40) Lucena LBS, Kosminsky M, Costa LJ, Góes PSA. Validation of the Portuguese version of the RDC/TMD Axis II questionnaire. Brazilian Oral Research. 2006;20(4):312–7. http://dx.doi.org/10.1590/s1806-83242006000400006 DOI: https://doi.org/10.1590/S1806-83242006000400006

(41) Bjelland I, Dahl AA, Haug TT, Neckelmann D. The validity of the Hospital Anxiety and Depression Scale. Journal of Psychosomatic Research. 2002;52(2):69–77. http://dx.doi.org/10.1016/s0022-3999(01)00296-3 DOI: https://doi.org/10.1016/S0022-3999(01)00296-3

(42) Santos CC, Pereira LSM, Resende MA, Magno F, Aguiar V. Applicability of the Brazilian version of the McGill pain questionnaire in elderly patients with chronic pain. Acta Fisiátrica. 2006;13(2):75-82. https://doi.org/10.11606/issn.2317-0190.v13i2a102586 DOI: https://doi.org/10.5935/0104-7795.20060002

(43) Pimenta CAM, Mattos Pimenta CA, Teixeira MJ. Adaptation of McGill questionnaire to portuguese language. Rev. esc. enferm. 1996;30(3) http://dx.doi.org/10.1590/s0080-62341996000300009 DOI: https://doi.org/10.1590/S0080-62341996000300009

(44) Park HJ, Friston K. Structural and functional brain networks: from connections to cognition. Science. 2013;342(6158):1238411. https://doi.org/10.1126/science.1238411 DOI: https://doi.org/10.1126/science.1238411

(45) Ioannides AA. Dynamic functional connectivity. Current Opinion in Neurobiology. 2007;17(2):161–70. http://dx.doi.org/10.1016/j.conb.2007.03.008 DOI: https://doi.org/10.1016/j.conb.2007.03.008

(46) Smit DJA, Stam CJ, Posthuma D, Boomsma DI, de Geus EJC. Heritability of “small-world” networks in the brain: A graph theoretical analysis of resting-state EEG functional connectivity. Human Brain Mapping. 2008;29:1368–78. http://dx.doi.org/10.1002/hbm.20468 DOI: https://doi.org/10.1002/hbm.20468

(47) Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(3):186–98. https://doi.org/10.1038/nrn2575 DOI: https://doi.org/10.1038/nrn2575

(48) Sugihara G, May R, Ye H, Hsieh CH, Deyle E, Fogarty M, et al. Detecting Causality in Complex Ecosystems. Science. 2012;338(6106):496–500. http://dx.doi.org/10.1126/science.1227079 DOI: https://doi.org/10.1126/science.1227079

(49) Mønster D, Fusaroli R, Tylén K, Roepstorff A, Sherson JF. Inferring Causality from Noisy Time Series Data - A Test of Convergent Cross-Mapping. Proceedings of the 1st International Conference on Complex Information Systems. 2016;1:48-56. http://dx.doi.org/10.5220/0005932600480056 DOI: https://doi.org/10.5220/0005932600480056

(50) Humphries MD, Gurney K, Prescott TJ. The brainstem reticular formation is a small-world, not scale-free, network. Proc Biol Sci. 2006;273(1585):503–11. https://doi.org/10.1098/rspb.2005.3354 DOI: https://doi.org/10.1098/rspb.2005.3354

(51) Jensen MP, Sherlin LH, Gertz KJ, Braden AL, Kupper AE, Gianas A, et al. Brain EEG activity correlates of chronic pain in persons with spinal cord injury: clinical implications. Spinal Cord. 2013;51:55–8. http://dx.doi.org/10.1038/sc.2012.84 DOI: https://doi.org/10.1038/sc.2012.84

(52) Tran Y, Boord P, Middleton J, Craig A. Levels of brain wave activity (8-13 Hz) in persons with spinal cord injury. Spinal Cord. 2004;42(2):73–9. https://doi.org/10.1038/sj.sc.3101543 DOI: https://doi.org/10.1038/sj.sc.3101543

(53) Camfferman D, Lorimer Moseley G, Gertz K, Pettet MW, Jensen MP. Waking EEG Cortical Markers of Chronic Pain and Sleepiness. Pain Medicine. 2017;18(10):1921–31. http://dx.doi.org/10.1093/pm/pnw294 DOI: https://doi.org/10.1093/pm/pnw294

(54) Vuckovic A, Hasan MA, Fraser M, Conway BA, Nasseroleslami B, Allan DB. Dynamic Oscillatory Signatures of Central Neuropathic Pain in Spinal Cord Injury. The Journal of Pain. 2014;15(6):645–55. http://dx.doi.org/10.1016/j.jpain.2014.02.005 DOI: https://doi.org/10.1016/j.jpain.2014.02.005

(55) Drewes AM, Krarup AL, Detlefsen S, Malmstrom ML, Dimcevski G, Funch-Jensen P. Pain in chronic pancreatitis: the role of neuropathic pain mechanisms. Gut. 2008;57(11):1616–27. http://dx.doi.org/10.1136/gut.2007.146621 DOI: https://doi.org/10.1136/gut.2007.146621

(56) Olesen SS, Hansen TM, Graversen C, Steimle K, Wilder-Smith OHG, Drewes AM. Slowed EEG rhythmicity in patients with chronic pancreatitis. European Journal of Gastroenterology & Hepatology. 2011;23(5):418–24. http://dx.doi.org/10.1097/meg.0b013e3283457b09 DOI: https://doi.org/10.1097/MEG.0b013e3283457b09

(57) van den Broeke EN, Wilder-Smith OHG, van Goor H, Vissers KCP, van Rijn CM. Patients with Persistent Pain after Breast Cancer Treatment Show Enhanced Alpha Activity in Spontaneous EEG. Pain Medicine. 2013;14(12):1893–9. http://dx.doi.org/10.1111/pme.12216 DOI: https://doi.org/10.1111/pme.12216

(58) Hughes SW, Crunelli V. Thalamic Mechanisms of EEG Alpha Rhythms and Their Pathological Implications. The Neuroscientist. 2005;11(4):357–72. http://dx.doi.org/10.1177/1073858405277450 DOI: https://doi.org/10.1177/1073858405277450

(59) Kim H, Guilleminault C, Hong S, Kim D, Kim S, Go H, et al. Pattern analysis of sleep-deprived human EEG. Journal of Sleep Research. 2001;10(3):193–201. http://dx.doi.org/10.1046/j.1365-2869.2001.00258.x DOI: https://doi.org/10.1046/j.1365-2869.2001.00258.x

(60) Kaida K, Takahashi M, Åkerstedt T, Nakata A, Otsuka Y, Haratani T, et al. Validation of the Karolinska sleepiness scale against performance and EEG variables. Clinical Neurophysiology. 2006;117(7):1574–81. http://dx.doi.org/10.1016/j.clinph.2006.03.011 DOI: https://doi.org/10.1016/j.clinph.2006.03.011

(61) Strijkstra AM, Beersma DGM, Drayer B, Halbesma N, Daan S. Subjective sleepiness correlates negatively with global alpha (8–12 Hz) and positively with central frontal theta (4–8 Hz) frequencies in the human resting awake electroencephalogram. Neuroscience Letters. 2003;340(1):17–20. http://dx.doi.org/10.1016/s0304-3940(03)00033-8 DOI: https://doi.org/10.1016/S0304-3940(03)00033-8

(62) Pfurtscheller G, Neuper C. Motor imagery activates primary sensorimotor area in humans. Neuroscience Letters. 1997;239(2-3):65–8. http://dx.doi.org/10.1016/s0304-3940(97)00889-6 DOI: https://doi.org/10.1016/S0304-3940(97)00889-6

(63) Kaneko N, Yokoyama H, Masugi Y, Watanabe K, Nakazawa K. Phase dependent modulation of cortical activity during action observation and motor imagery of walking: An EEG study. Neuroimage. 2021;225:117486. https://doi.org/10.1016/j.neuroimage.2020.117486 DOI: https://doi.org/10.1016/j.neuroimage.2020.117486

(64) Weissman-Fogel I, Moayedi M, Tenenbaum HC, Goldberg MB, Freeman BV, Davis KD. Abnormal cortical activity in patients with temporomandibular disorder evoked by cognitive and emotional tasks. Pain. 2011;152(2):384–96. https://doi.org/10.1016/j.pain.2010.10.046 DOI: https://doi.org/10.1016/j.pain.2010.10.046

(65) Kucyi A, Moayedi M, Weissman-Fogel I, Goldberg MB, Freeman BV, Tenenbaum HC, et al. Enhanced medial prefrontal-default mode network functional connectivity in chronic pain and its association with pain rumination. J Neurosci. 2014;34(11):3969–75. https://doi.org/10.1523/JNEUROSCI.5055-13.2014 DOI: https://doi.org/10.1523/JNEUROSCI.5055-13.2014

(66) Pfurtscheller G, Silva FHL. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110(11):1842–57. https://doi.org/10.1016/s1388-2457(99)00141-8 DOI: https://doi.org/10.1016/S1388-2457(99)00141-8

(67) Brinkman L, Stolk A, Dijkerman HC, de Lange FP, Toni I. Distinct roles for alpha- and beta-band oscillations during mental simulation of goal-directed actions. J Neurosci. 2014;34(44):14783–92. http://doi.org/10.1523/JNEUROSCI.2039-14.2014 DOI: https://doi.org/10.1523/JNEUROSCI.2039-14.2014

(68) Meirovitch Y, Harris H, Dayan E, Arieli A, Flash T. Alpha and beta band event-related desynchronization reflects kinematic regularities. J Neurosci. 2015;28;35(4):1627–37. https://doi.org/10.1523/JNEUROSCI.5371-13.2015 DOI: https://doi.org/10.1523/JNEUROSCI.5371-13.2015

(69) Anderson KL, Ding M. Attentional modulation of the somatosensory mu rhythm. Neuroscience. 2011;180:165–80. https://doi.org/10.1016/j.neuroscience.2011.02.004 DOI: https://doi.org/10.1016/j.neuroscience.2011.02.004

(70) Jensen O, Mazaheri A. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci. 2010;4:186. https://doi.org/10.3389/fnhum.2010.00186 DOI: https://doi.org/10.3389/fnhum.2010.00186

(71) Romaniello A, Cruccu G, Frisardi G, Arendt-Nielsen L, Svensson P. Assessment of nociceptive trigeminal pathways by laser-evoked potentials and laser silent periods in patients with painful temporomandibular disorders. Pain. 2003;103(1-2):31–9. https://doi.org/10.1016/S0304-3959(02)00347-0 DOI: https://doi.org/10.1016/S0304-3959(02)00347-0

(72) Veldhuijzen DS, Kenemans JL, van A J, Olivier B, Kalkman CJ, Volkerts ER. Processing capacity in chronic pain patients: A visual event-related potentials study. Pain. 2006;121(1):60–8. http://dx.doi.org/10.1016/j.pain.2005.12.004 DOI: https://doi.org/10.1016/j.pain.2005.12.004

(73) Montoya P, Sitges C, García-Herrera M, Rodríguez-Cotes A, Izquierdo R, Truyols M, et al. Reduced brain habituation to somatosensory stimulation in patients with fibromyalgia. Arthritis Rheum. 2006;54(6):1995–2003. https://doi.org/10.1002/art.21910 DOI: https://doi.org/10.1002/art.21910

(74) Farmer MA, Baliki MN, Vania Apkarian A. A dynamic network perspective of chronic pain. Neuroscience Letters. 2012;520(2):197–203. http://dx.doi.org/10.1016/j.neulet.2012.05.001 DOI: https://doi.org/10.1016/j.neulet.2012.05.001

(75) Cauda F, Sacco K, Duca S, Cocito D, D’Agata F, Geminiani GC, et al. Altered Resting State in Diabetic Neuropathic Pain. PLoS ONE. 2009;4(2):e4542. http://dx.doi.org/10.1371/journal.pone.0004542 DOI: https://doi.org/10.1371/journal.pone.0004542

(76) Baliki MN, Geha PY, Apkarian AV, Chialvo DR. Beyond Feeling: Chronic Pain Hurts the Brain, Disrupting the Default-Mode Network Dynamics. Journal of Neuroscience. 2008;28(6):1398–403. http://dx.doi.org/10.1523/jneurosci.4123-07.2008 DOI: https://doi.org/10.1523/JNEUROSCI.4123-07.2008

(77) Napadow V, LaCount L, Park K, As-Sanie S, Clauw DJ, Harris RE. Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum. 2010;62(8):2545–55. https://doi.org/10.1002/art.27497 DOI: https://doi.org/10.1002/art.27497

(78) Cifre I, Sitges C, Fraiman D, Muñoz MÁ, Balenzuela P, González-Roldán A, et al. Disrupted functional connectivity of the pain network in fibromyalgia. Psychosom Med. 2012;74(1):55–62. https://doi.org/10.1097/PSY.0b013e3182408f04 DOI: https://doi.org/10.1097/PSY.0b013e3182408f04

(79) Taesler P, Rose M. Prestimulus Theta Oscillations and Connectivity Modulate Pain Perception. J Neurosci. 2016;36(18):5026–33. https://doi.org/10.1523/JNEUROSCI.3325-15.2016 DOI: https://doi.org/10.1523/JNEUROSCI.3325-15.2016

(80) Case M, Zhang H, Mundahl J, Datta Y, Nelson S, Gupta K, et al. Characterization of functional brain activity and connectivity using EEG and fMRI in patients with sickle cell disease. Neuroimage Clin. 2017;14:1–17. https://doi.org/10.1016/j.nicl.2016.12.024 DOI: https://doi.org/10.1016/j.nicl.2016.12.024

(81) Llinás RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP. Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci U S A. 1999;96(26):15222–7. https://doi.org/10.1073/pnas.96.26.15222 DOI: https://doi.org/10.1073/pnas.96.26.15222

(82) Llinás R, Urbano FJ, Leznik E, Ramírez RR, van Marle HJF. Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci. 2005;28(6):325–33. https://doi.org/10.1016/j.tins.2005.04.006 DOI: https://doi.org/10.1016/j.tins.2005.04.006

(83) Santana JERS, Baptista AF, Lucena R, Lopes TS, Rosário RS, Xavier MR, et al. Altered Dynamic Brain Connectivity in Individuals With Sickle Cell Disease and Chronic Pain Secondary to Hip Osteonecrosis. Clin EEG Neurosci. 2023;54(3):333–42. https://doi.org/10.1177/15500594211054297 DOI: https://doi.org/10.1177/15500594211054297

(84) Lopes TS, Santana JE, Silva WS, Fraga FJ, Montoya P, Sá KN, et al. Increased Delta and Theta Power Density in Sickle Cell Disease Individuals with Chronic Pain Secondary to Hip Osteonecrosis: A Resting-State Eeg Study. Brain Topogr. 2023. http://dx.doi.org/10.1007/s10548-023-01027-x DOI: https://doi.org/10.1007/s10548-023-01027-x

(85) Auerbach SM, Laskin DM, Frantsve LM, Orr T. Depression, pain, exposure to stressful life events, and long-term outcomes in temporomandibular disorder patients. J Oral Maxillofac Surg. 2001;59(6):628–33. https://doi.org/10.1053/joms.2001.23371 DOI: https://doi.org/10.1053/joms.2001.23371

Downloads

Published

10/16/2024

Issue

Section

Original research

How to Cite

1.
Ito CH, Campbell FQ, Montoya P, Santana JERS, Sá KN, Fonseca A, et al. Patients with temporomandibular disorders and chronic pain of myofascial origin display reduced alpha power density and altered small-world properties of brain networks. Brain Imaging and Stimul. [Internet]. 2024 Oct. 16 [cited 2024 Nov. 24];3:e5648. Available from: https://www5.bahiana.edu.br/index.php/brain/article/view/5648

Most read articles by the same author(s)

1 2 > >>