Effects on postural control in quadriplegia with Galvanic Vestibular Stimulation: case report

Authors

  • Sara Brandão Leite Universidade Municipal de São Caetano do Sul (São Caetano do Sul). São Paulo, Brazil. https://orcid.org/0009-0008-0839-5533
  • Kathelyn Regina Cursino dos Santos Universidade Municipal de São Caetano do Sul (São Caetano do Sul). São Paulo, Brazil. https://orcid.org/0009-0004-1223-7256
  • Catarina Costa Boffino Universidade Municipal de São Caetano do Sul (São Caetano do Sul). São Paulo, Brazil. Universidade de São Paulo (São Paulo), São Paulo, Brazil. https://orcid.org/0000-0001-8280-6320

DOI:

https://doi.org/10.17267/2965-3738bis.2025.e6154

Keywords:

Spinal Cord Injuries, Postural Balance, Quadriplegia, Transcranial Direct Current Stimulation, Case Report

Abstract

INTRODUCTION: Spinal cord injury leads to sensorimotor sequelae with functional impairment, which may affect postural control. Galvanic vestibular stimulation (GVS) stimulates the postural muscles that support vertical posture. The present study was registered as a clinical trial in the Brazilian Registry of Clinical Trials under numbers UTN U1111-1295-1127 and Rebec RBR-8w55n2g on 14-08-2023. AIM: To evaluate the effects of postural control in a quadriplegic patient obtained through exposure to GVS. METHOD: This is a case study; the participant was clinically assessed using the Functional Independence Measurement and the American Spinal Injury Association Scales. The computerized photographic postural assessment was conducted, and then a force platform assessment using Clinical Posturography was conducted. The patient underwent a therapeutic test to establish GVS dosimetry. Ten treatment sessions were conducted using GVS, vestibular rehabilitation, and neurofunctional physiotherapy exercises. The assessment procedures were repeated at the end. RESULTS: The patient showed gains in ASIA in sensory level scores, and FIM showed gains in independence. There were gains in Computerized Postural Assessment and Clinical Posturography Evaluation (increase in the sway area and speed variables in the x axes, and a decrease in the y axis velocity). A change in condition to sitting without support was achieved and recorded. CONCLUSION: GVS is a novel resource in the recovery of postural control by stimulating physiological circuits in quadriplegic patients after spinal cord trauma. This case report helped us to evaluate a novel clinical and functional tool, as the features of this proposal to studied with more participants.  

Downloads

Download data is not yet available.

References

(1) Shumway-Cook A, Woollacott MH. Controle Motor: Controle Postural Normal. 3ª ed. Barueri: Manole; 2010.

(2) Soares AV. A contribuição visual para o controle postural. Unifesp. Rev Neurociênc. 2010;18(3):370-79. https://doi.org/10.34024/rnc.2010.v18.8460

(3) Rizzo-Serra CV, Gonzalez-Castaño A, Leon-Sarmiento F. Galvanic vestibular stimulation: a novel modulatory countermeasure for vestibular-associated movement disorders. Arq Neuro-Psiquiatr. 2014;72(1):22-9. https://doi.org/10.1590/0004-282X20130182

(4) David SP, Villa LSC. Abordagem Fisioterapêutica no Tratamento de Tetraplegia após Trauma Raquimedular. Available from: https://repositorio.fasipe.com.br/bitstreams/23e7d97d-1dcd-4278-8637-cd857bd771e4/download.

(5) Frison VB, Teixeira G, Oliveira TF, Resende TL, Netto CA. The profile of spinal injuries in Porto Alegre. Fisioter Pesqui. 2013;20(2):145-51. https://doi.org/10.1590/S1809-29502013000200011

(6) Silva RG. Estratégias de controle postural em indivíduos com lesão medular [Tese]. Natal: Universidade Federal do Rio Grande do Norte; 2015. 65 p. Available from: https://repositorio.ufrn.br/bitstream/123456789/23004/1/RacquelGuimaraesDaSilva_DISSERT.pdf

(7) Nascimento TN, Boffino CC. Case report: Galvanic vestibular stimulation in the chronic spinal cord injury patient. Front Rehabil Sci. 2022;3:779846. https://doi.org/10.3389/fresc.2022.779846

(8) Dlugaczyk J, Gensberger KD, Straka H. Galvanic vestibular stimulation: from basic concepts to clinical applications. J Neurophysiol. 2019;121(6):2237-55. https://doi.org/10.1152/jn.00035.2019

(9) Slyudts M, Curthoys I, Vanspauwen R, Papsin BC, Cushing SL, Ramos A, et al. Electrical vestibular stimulation in humans: a narrative review. Audiol Neurootol. 2020;25(1-2):6-24. https://doi.org/10.1159/000502407

(10) Fujimoto C, Yamamoto Y, Kamogashira T, Kinoshita M, Egami N, Uemura Y, et al. Noisy galvanic vestibular stimulation induces a sustained improvement in body balance in elderly adults. Sci Rep. 2016;6:37575. https://doi.org/10.1038/srep37575

(11) Fujimoto C, Egami N, Kawahara T, Uemura Y, Yamamoto Y, Yamasoba T, Iwasaki S. Noisy galvanic vestibular stimulation sustainably improves posture in bilateral vestibulopathy. Front Neurol. 2018;9:900. https://doi.org/10.3389/fneur.2018.00900

(12) Helmchen C, Rothera M, Spliethoffa P, Sprenger A. Increased brain responsivity to galvanic vestibular stimulation in bilateral vestibular failure. Neuroimage Clin. 2019;24:101942. https://doi.org/10.1016/j.nicl.2019.101942

(13) Cai J, Lee S, Ba F, Garg S, Kim LJ, Liu A, et al. Galvanic vestibular stimulation (GVS) augments deficient pedunculopontine nucleus (PPN) connectivity in mild Parkinson's disease: fMRI effects of different stimuli. Front Neurosci. 2018;12:101. https://doi.org/10.3389/fnins.2018.00101

(14) Caporali JFM, Labança L, Florentino KR, Souza BO, Utsch GD. Intrarater and interrater agreement and reliability of vestibular evoked myogenic potential triggered by galvanic vestibular stimulation (galvanic-VEMP) for HTLV-1 associated myelopathy testing. PLoS One. 2018;13(9):e0204449. https://doi.org/10.1371/journal.pone.0204449

(15) Ribeiro M, Miyazaki MH, Filho DJ, Sakamoto H, Battistella LR. Reprodutibilidade da versão brasileira da Medida de Independência Funcional. Acta Fisiátrica. 2001;8(1):45-52. https://doi.org/10.5935/0104-7795.20010002

(16) Barros Filho TEP. Avaliação padronizada nos traumatismos raquimedulares. Rev Bras Ortop. 1994;29(3):203-9. Available from: https://rbo.org.br/detalhes/759/pt-BR/avaliacao-padronizada-nos-traumatismos-raquimedulares

(17) Kleiner AFR, Schlittler DXC, Sánchez-Arias MR. T he role of visual, vestibular, somatosensory and auditory systems for the postural control. Rev Neurociências. 2011;19:349-57. Available from: https://repositorio.unesp.br/server/api/core/bitstreams/c145902a-6054-4c75-b6f9-411c158331b4/content

(18) Day BL, Guerraz M, Cole J. Sensory interactions for human balance control revealed by galvanic vestibular stimulation. Adv Exp Med Biol. 2002;508:129-37. https://doi.org/10.1007/978-1-4615-0713-0_16

(19) Medola FO, Castello GLM, Freitas LNF, Busto RM. Avaliação do alcance funcional de indivíduos com lesão medular espinhal usuários de cadeira de rodas. Movimenta. 2009;2(1):12-16. Available from: https://www.revista.ueg.br/index.php/movimenta/article/view/7202

(20) Takakusaki K. Functional neuroanatomy for posture and gait control. J Mov Disord. 2017;10(1):1-17. https://doi.org/10.14802/jmd.16062

(21) Pires A, Silva T, Torres M, Diniz M, Tavares M, Gonçalves D. Galvanic vestibular stimulation and its applications: a systematic review. Braz J Otorhinolaryngol. 2022;88(Suppl 3):S202-S211. https://doi.org/10.1016/j.bjorl.2022.05.010

(22) Pavlik AE, Inglis JT, Lauk M, Oddsson L, Collins JJ. The effects of stochastic galvanic vestibular stimulation in human postural sway. Exp Brain Res. 1999;124(3):273-80. https://doi.org/10.1007/s002210050623

Downloads

Published

05/06/2025

Issue

Section

Case reports

How to Cite

1.
Leite SB, dos Santos KRC, Boffino CC. Effects on postural control in quadriplegia with Galvanic Vestibular Stimulation: case report. Brain Imaging and Stimul. [Internet]. 2025 May 6 [cited 2025 May 18];4:e6154. Available from: https://www5.bahiana.edu.br/index.php/brain/article/view/6154

Most read articles by the same author(s)

  • Abrahão Fontes Baptista, Adenauer Girardi Casali, Adriana Leico Oda, Alexandre Hideki Okano , Alexandre Moreira, Ana Lúcia Yaeko da Silva Santos, Ana Mércia Fernandes, Ana Paula Fontana, André Brunoni, André Fonseca, Artur Padão Gosling, Catarina Costa Boffino, Clarice Tanaka, Claudia Eunice Neves de Oliveira , Egas Caparelli-Dáquer , Elisabete Carrara de Angelis, Erika de Carvalho Rodrigues, Francisco Fraga, Fuad Ahmad Hazime, Jamille Evelyn Santana, João Ricardo Sato, Josie Resende Torres da Silva, Juliana Barbosa Goulardins, Julie Azevedo Araújo Valente, Katia Karina Monte-Silva, Katia Nunes Sá, Leandro Valiengo, Lucas Remoaldo Trambaiolli, Maércio Maia, Marcelo Lourenço da Silva, Marcus Vinícius Santana, Maria Teresa Carthery-Goulart , Mauro Muszkat, Michael Lee, Nivaldo Antonio Parizotto, Pedro Montoya, Rachel Fontes Baptista, Rafael Jardim Duarte-Moreira, Rodrigo de Mattos Brito, Rogério Adas Ayres de Oliveira, Rubens Cury, Samuel Katsuyuki Shinjo , Tiago da Silva Lopes, Yossi Zana, Brain Imaging and neurostimulation in health and disorders: status report , Brain Imaging and Stimulation: Vol. 2 (2023)
  • Abrahão Fontes Baptista, Adenauer Girardi Casali, Adriana Leico Oda, Alexandre Hideki Okano, Alexandre Moreira, Ana Lúcia Yaeko da Silva Santos, Ana Mércia Fernandes, Ana Paula Fontana, André Brunoni, André Fonseca, Artur Padão Gosling, Catarina Costa Boffino, Clarice Tanaka, Claudia Eunice Neves de Oliveira, Egas Caparelli-Dáquer, Elisabete Carrara de Angelis, Erika de Carvalho Rodrigues, Francisco Fraga, Fuad Ahmad Hazime, Jamille Evelyn Santana, João Ricardo Sato, Josie Resende Torres da Silva, Juliana Barbosa Goulardins, Julie Azevedo Araújo Valente, Kátia Monte-Silva, Katia Nunes Sá, Leandro Valiengo, Lucas Remoaldo Trambaiolli, Maércio Maia, Marcelo Lourenço da Silva, Marcus Vinícius Santana, Maria Teresa Carthery-Goulart, Mauro Muszkat, Michael Lee, Nivaldo Antonio Parizotto, Pedro Montoya, Rachel Fontes Baptista, Rafael Jardim Duarte-Moreira, Rodrigo de Mattos Brito, Rogério Adas Ayres de Oliveira, Rubens Cury, Samuel Katsuyuki Shinjo, Tiago da Silva Lopes, Yossi Zana, [Erratum] Brain Imaging and neurostimulation in health and disorders: status report , Brain Imaging and Stimulation: Vol. 3 (2024)