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ABSTRACT | BACKGROUND: Knee osteoarthritis (OA) is associated with changes in corticospinal and intracortical excitability which 
may be due to persistent pain. OBJECTIVE: To investigate the cortical excitability profile of the femoral quadriceps in people with 
knee OA and healthy volunteers. METHODS: Cortical excitability was assessed using transcranial magnetic stimulation (TMS) in 7 
participants with knee OA and 6 age- and sex-matched healthy volunteers. The motor evoked potential (MEP), cortical silent period 
(CSP), short intracortical inhibition (SICI) and intracortical facilitation (ICF) of the rectus femoris (RF), vastus medialis (VM) and vastus 
lateralis (VL) were measured using standard single pulse and paired-pulse TMS techniques. Data analysis was performed using Mann-
Whitney test considering alpha <0.05. RESULTS: Participants with knee OA demonstrated reduced MEP amplitude in the RF and VM 
muscles and augmented MEP amplitude in the VL muscle. SICI was reduced only in the RF and ICF was reduced in the VM and VL. CSP 
was reduced in all muscles. CONCLUSION: People with knee OA exhibit altered corticospinal and intracortical excitability profile in 
specific portions of the quadriceps muscle. This suggests a possible adaptive strategy to maintain quadriceps motor activity.
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Introduction 

Knee Osteoarthritis (OA) is a chronic condition 
characterized by joint degeneration and persistent 
pain.1 Weakness and/or muscular imbalance of the 
quadriceps muscle are strongly correlated with pain 
aggravation2, poor functional self-assessment and 
physical performance3 in individuals with knee OA. 
However, quadriceps weakness is multifactorial 
and involves sensory components of pain and 
inflammation4, changes in neuromuscular (cortical, 
segmental and peripheral) control and muscle cell 
properties.5,6 Biomechanical and electromyographic 
markers have a predictive value for the severity of 
some symptoms and can be used to guide therapeutic 
strategies.7,8 In addition, a lower capacity to produce 
voluntary electromyographic activity in the quadriceps 
(central activation deficit - CAD) is associated with poor 
physical performance in individuals with knee OA.9,10

More recently, the corticospinal and intracortical 
pathways have been investigated in knee OA 
with transcranial magnetic stimulation (TMS).9,11-14 

Resting Motor Threshold (RMT) and Motor evoked 
potential (MEP) are measures of corticospinal 
excitability, whereas Intracortical facilitation (ICF) 
and Short Intracortical Inhibition (SICI) represent 
cortico-cortical connectivity through the activity 
of the neurotransmitters glutamate and GABA, 
respectively.15,16 Kittelson et al found no differences 
in corticospinal (MEP) and intracortical excitability 
between subjects with OA and controls, and no 
correlation between TMS and CAD measures, but the 
RMT of the quadriceps was positively correlated with 
torque and negatively correlated with pain scores.13 
Accordingly, increased corticospinal excitability 
(lower threshold) is associated with muscle weakness 
and more pain. Also, the cortical silent period (CSP) 
is negatively correlated with pain scores.11 In fact, a 
component of the (CSP) is mediated by GABAergic 
inhibition, via GABAA and GABAB receptors.17,18 

Although it is not consensus, reduction of the (CSP) 
can also be interpreted as an increase in intracortical 
facilitation due to reduced GABAergic inhibition.19

Evidence indicates that MEP and ICF are positively 
correlated with pain and functional limitation in knee 
OA.12,13,19 However, these studies have recorded the 
vastus lateralis or rectus femoris.9,11-13 The quadriceps 
has four distinct portions and optimal joint function 
results from integrated neuromuscular control. 

Interestingly, the cortical representation of the 
quadriceps of individuals with patellofemoral pain is 
reduced with the same pattern in the rectus femoris 
(RF), vastus lateralis (VL) and vastus medialis (MV) 
portions.20 Therefore, this study aims to investigate 
the corticospinal and intracortical excitability of the 
femoral quadriceps of subjects with OA and controls

Materials and methods 

A cross-sectional, descriptive study was carried out 
at the Laboratory of Functional Electrical Stimulation, 
Federal University of Bahia, Brazil, between January 
and October 2016. The study was approved by the 
Research Ethics Committee of the UFBA Institute of 
Health Sciences, protocol number 1,378,100.

Participants

We included in this study 13 participants (seven OA 
and six controls) recruited from health services in 
Salvador, Bahia, Brazil. Subjects were over 50 years 
of age, presented knee pain on most days of the last 
month, a score on the Chronic Pain Grade18 equal 
to or greater than II, and a medical report confirming 
knee OA. Healthy controls were paired by sex, 
age, and body weight. Healthy controls could not 
present any pain in the moment of the assessment 
or have any knee injury in the past. Subjects with 
contraindications to TMS, history of disorders with 
confounding factors (fibromyalgia, rheumatoid 
arthritis, ankylosing spondylitis, low back pain and 
spinal and lower limb surgeries) and people unable 
to understand the content of the assessment tools 
were excluded. All subjects signed the Free and 
Informed Consent.

Procedures 

The subjects were positioned in a comfortable chair. 
Electromyography electrodes (Miotec, Brazil) were 
placed in the RF, VM and VL of the most painful knee, 
according to the SENIAM.21 The reference electrode 
was positioned on the ipsilateral patella. For the 
controls, the knee of the dominant limb was selected. 
EMG activity was pre-amplified, filtered at 1-2000Hz 
and captured at a sampling rate of 4000Hz using a 
1401/1902 acquisition system and Signal v.6 software 
(Cambridge Electronic Design, Cambridge, UK).

http://dx.doi.org/10.17267/2965-3738bis.2023.e4817
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Corticospinal and intracortical excitability were evaluated with TMS (BiStim, Magstim, UK). A 70mm figure-of-
eight coil was used. For positioning of the coil, the vertex (Cz) was located through the use of the international 
10/20 EEG localization system. A pre-marked polyester cap with a 1x1cm grid oriented in the Cartesian plane was 
used as reference for TMS procedures. A light contraction of the quadriceps was performed, and RF activity was 
standardized around 100 μV during TMS. Signal v.6 software was used to record and analyze the EMG MEP.

A single location (hot spot) in the M1 that represented the best activation of the RF, VM and VL was identified. 
After the hot spot was found, the active motor threshold (AMT) was estimated. The AMT corresponds to the 
lowest stimulus intensity capable of generating a potential with a peak-to-peak amplitude of 200μV. The average 
amplitude of 10 pulses was used to estimate each of the excitability measures (MEP, SICI and ICF) totaling 30 
pulses applied randomly in the hot spot. MEP was obtained with suprathreshold AMT intensities (120%). CSP was 
obtained during MEP collection. The CSP was estimated in milliseconds considering the latency from the start of 
the MEP until the EMG activity was slightly restored. CSP duration was calculated by subtracting the onset from 
the offset of the CSP. For ICF and SICI, the TMS paired pulse paradigm was used. The SICI was evaluated with a 
conditioning pulse at 80% of the MEP and the test pulse at 120%, with an interval of 2 ms between both. The ICF 
was evaluated with the same values and interval of 15 ms. A schematic representation of the electromyographic 
recording during TMS can be seen in figure 1. 

Figure 1. Representation of the electromyographic record of the simple pulse and the paired pulse of the transcranial magnetic stimulation. In the simple pulse, 
the amplitude in mV of the MEP and the duration of the CSP were collected. In the paired pulse, the mV amplitude of inhibition and intracortical facilitation

Source: the authors (2023).

http://dx.doi.org/10.17267/2965-3738bis.2023.e4817
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Analysis

EMG records were treated offline using Signal software v.6 (Cambridge Electronic Design, Cambridge, UK). MEP 
was expressed in mV and the calculation of SICI and ICF were based on MEP. The formula used to obtain SICI was: 
((SICI average - MEP average) / MEP average) x 100, and for ICF: ((ICF average - MEP average) / MEP average) x 100. 
The Shapiro-Wilk test demonstrated that the data were not normal, and the Mann-Whitney U test was used for 
comparing data from knee AO and control groups.

Table 1. Clinical and physical characteristics of subjects with OA and controls

Source: the authors (2023).

Source: the authors (2023).

Table 2. Records of active motor threshold and hotspot of subjects with OA and healthy

http://dx.doi.org/10.17267/2965-3738bis.2023.e4817
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Source: the authors (2023).

Source: the authors (2023).

Results

The clinical characteristics of the participants are described in Table 1. The data demonstrate that the groups 
were similar. Regarding the AMT data for each subject, they are described in table 2. RF and VM MEP were lower 
in participants with knee OA (U = -2.286, p <0.050 and U = -2.429, p <0.050, respectively). VL MEP was similar 
between groups (U = -0.571, p = 0.628) (Figure 2). Descriptive MEP data suggest different patterns of activation 
between groups.

ICF was reduced in the VM and VL portions (U = -2.571, p < 0.010, and U = -2.857, p = 0.005, respectively). RF ICF 
was similar between the groups (U = -1.571, p = 0.138) (Figure 3). The CSP duration of all assessed portions of the 
quadriceps was smaller in subjects with knee OA, being RF (U = -2.98, p < 0.010), VM (U = -1.432, p < 0.050) and VL 
(U = -1.965, p < 0.050) (Figure 4).

Figure 2. Amplitude in mV of the motor evoked potential (MEP) of the femoral rectus (RF), vastus medialis (VM) and vastus lateralis (VL) of subjects with knee OA 
and controls. Values presented in median and interquartile ranges

Figure 3. Intracortical Inhibition (SICI) and intracortical facilitation (ICF) presented in percentage values regarding the motor evoked potential (MEP) of femoral 
rectus (RF), vastus medialis (VM) and vastus lateralis (VL) of subjects with knee OA and controls

http://dx.doi.org/10.17267/2965-3738bis.2023.e4817
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Discussion

Corticospinal and intracortical excitability of the quadriceps may be distinct between subjects with knee OA and 
controls. Our data show that MEP was reduced in RF and VM, suggesting reduction in corticospinal excitability of 
these portions. ICI was reduced in the RF, but not in the VM and VL. ICF was reduced in VM and VL, but not in RF. 
These findings suggest that cortical activity is distinct between subjects with knee OA and controls, and also that 
it may be different between the portions of the quadriceps. For this reason, we suggest that TMS studies should 
evaluate all portions of the quadriceps, and not only one. Interestingly, all portions of the quadriceps showed a 
reduction in CSP in subjects with knee OA, making this measure the only consistent finding across the entire muscle. 

The reduction of CSP can be interpreted as a lower intracortical GABAergic inhibition.17-19 Since, GABAA was 
only altered in RF muscle, as measured by ICI, GABAB was probably the reason for the VM and VL disinhibition. 
Therefore, we speculate that individuals with OA present an excitation/inhibition imbalance in cortical circuits 
related to the quadriceps muscle. 

A plausible explanation of our findings comes through the presence of Central Sensitization (SC), a phenomenon 
related to knee OA chronic pain22,23, and associated with changes in corticospinal and intracortical circuits. 
Corticospinal (MEP) and intracortical excitability (SICI, ICF and CSP) cannot be predicted, but have a strong 
correlation with SC.24 Subjects with SC secondary to knee OA present changes in corticospinal and intracortical 
excitability.9,11-13 However, actual data are inconclusive with insufficient methodologies for a parsimonious clinical 
extrapolation. A case study verified that the mean amplitude of MEP was lower in the RF of the knee affected 
with OA in relation to the contralateral one.9 In addition, Tarragó et al.11 demonstrated that CSP is reduced in 
individuals with OA in relation to control individuals.

In fact, cortical changes in knee OA have high variability and do not present a characteristic pattern. Our data 
highlight that these changes may be distinct in the RF, VM, and VL portions. The optimal balance between the three 
superficial portions of the quadriceps, and also the deep portion (vastus intermedius) requires further studies. Our 
findings suggest that subjects with knee OA may have a reduction in inhibition in intracortical GABAergic via GABAA 
receptors (SICI) and via GABAB (CSP) receptors. In addition, ICF was decreased in the VM and VL. In view of this, it 
is plausible to assume that changes in populations of corticospinal neurons that control motoneurons of different 
portions of the quadriceps may contribute to muscle imbalance in individuals with knee OA. These findings are 
preliminary and limited because of our small sample size, limiting external validity of the data. Hence, new studies 
are stimulated to identify specificities in the excitability of the different portions of the quadriceps of individuals 
with OA. Measures of cortical excitability guided by neuronavigation may be a strategy to decrease the variability of 
responses.25 This strategy may aid in the identification of a pattern of excitability in individuals with knee OA. Studies 
with larger samples are needed to enable a more robust statistical analysis and to increase the external validity of 
the results for a possible clinical use. 

Figure 4. Duration of the Cortical Silent Period (CSP) in milliseconds (ms) of the femoral rectus (RF), vastus medialis (VM) 
and vastus lateralis (VL) of subjects with knee OA

Source: the authors (2023).

http://dx.doi.org/10.17267/2965-3738bis.2023.e4817
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Conclusion

Our results corroborate the idea of an altered 
cortical excitability of the femoral quadriceps in 
individuals with knee OA. In subjects with knee OA, 
the corticospinal excitability of RF and MV decreased 
while VL increased. This demonstrates a possible 
compensatory strategy to maintain motor activity of 
the quadriceps. In intracortical excitability there is a 
tendency for decreased facilitation and intracortical 
inhibition. Identifying differences in the cortical 
excitability of the quadriceps between subjects with 
OA and healthy allows us to understand the impact 
of this condition in the motor cortex. This study is 
preliminary, future works with larger sample size and 
methodological robustness are necessary to confirm 
or refute our findings.
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