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Accelerated repetitive transcranial magnetic 
stimulation for chronic musculoskeletal pain 
control: a crossover parallel group study protocol
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ABSTRACT | BACKGROUND: Chronic musculoskeletal pain is a prevalent condition associated with significant disability and high 
healthcare costs. Repetitive Transcranial Magnetic Stimulation (rTMS) has shown promise in pain management, but traditional protocols 
require daily sessions, posing logistical challenges. Accelerated Theta Burst Stimulation (TBS) offers a more practical alternative by 
delivering multiple stimulations in a single day. However, its use in chronic pain has not been investigated. OBJECTIVE: This study 
aims to evaluate the efficacy and safety of an accelerated TBS protocol in reducing pain in individuals with chronic musculoskeletal 
pain. It also explores neurophysiological mechanisms underlying treatment effects using electroencephalography (EEG). METHODS: 
A randomized, double-blind, two-phase crossover trial will be conducted with 25 chronic musculoskeletal pain adults. Participants will 
undergo both active and sham TBS protocols with a minimum one-week washout between phases. Each active session will consist of 
four 3-minute stimulations targeting the dorsolateral prefrontal cortex (DLPFC) with 600 pulses per session. The primary outcome is 
pain reduction, and secondary outcomes include changes in EEG oscillations and pressure pain thresholds. Safety will be monitored 
through reports of adverse effects. RESULTS: This protocol aims to generate preliminary evidence on the feasibility and efficacy of 
accelerated TBS for chronic musculoskeletal pain. It is expected that active TBS will result in significant pain reduction and modulation 
of EEG activity, including increased alpha power and reduced theta activity post-treatment. CONCLUSION: This study represents a 
novel application of accelerated TBS in chronic musculoskeletal pain management. The findings will also contribute to understanding 
the neuroplastic mechanisms involved in pain modulation through non-invasive brain stimulation.
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1. Introduction

Repetitive Transcranial Magnetic Stimulation (rTMS) 
is widely used for the treatment of chronic pain1,2, 
including chronic musculoskeletal pain, one of the 
main public health issues worldwide.3,4 Individuals with 
chronic musculoskeletal pain of various etiologies, 
such as knee osteoarthritis, rheumatoid arthritis, foot 
pain, shoulder pain, temporomandibular disorder, 
and low back pain, were treated with noninvasive 
brain stimulation, resulting in a small to moderate 
effect size reduction in pain.4-8 The rTMS treatment is 
painless and non-invasive, involving the placement of 
a coil on the patient's scalp, followed by the generation 
of electromagnetic pulses that will depolarize the 
neurons located beneath the coil.9

A limitation of rTMS treatment, both in clinical practice 
and research, is the need to perform stimulation 
on consecutive days. Typically, an average of five 
to ten consecutive days of treatment sessions are 
conducted, with one session per day. This overall 
intervention can be challenging to implement, 
as patients might face mobility issues related to 
their condition or difficulties accessing treatment 
centers. However, it is possible that other forms 
of rTMS administration, such as accelerated Theta 
Burst Stimulation (TBS), may be more suitable.10,11 
TBS technique, introduced a few years ago, has the 
advantage of being applied much more quickly than 
classical rTMS, as it uses higher frequencies (50Hz) 
modulated at low frequency (5Hz), with sessions 
lasting from two to three minutes, instead of the 30 
to 40 minutes of a classical rTMS session.12

Furthermore, TBS can be applied as an accelerated 
protocol, with more than one intervention performed 
on the same day, thus reducing the need for 
the individual to attend the treatment center as 
frequently.13,14 Accelerated TBS protocols have 
already been employed for certain mental health 
conditions and psychiatric disorders, particularly 
depression, a condition that has been extensively 
studied and has shown positive results.15,16 Although 
the authors believe that an accelerated rTMS protocol 
could positively impact pain management, no studies 
were found applying this protocol in individuals with 
chronic pain. However, a recent study explored its 
use in experimental pain, showing positive results in 
reducing pain intensity, though these findings cannot 
be extrapolated to patients.17 

The most commonly targeted area for accelerated 
TBS is the dorsolateral prefrontal cortex (DLPFC), and 
the stimulation of this area has been proven safe 
and effective for mental health issues.11 DLPFC is also 
targeted for analgesic purposes, aiming to increase 
the excitability of this region.18-20 High frequency 
stimulation of this superficial target leads to 
modulation of various cortical and subcortical regions 
involved in pain perception, as well as the emotional 
and cognitive components of pain.19 Imaging and 
electrophysiology studies have demonstrated 
structural and functional changes following rTMS 
treatment in regions such as the prefrontal, cingulate, 
insular, and orbitofrontal cortices, as well as the 
thalamus and striatum.20 Additionally, it has been 
suggested that rTMS activates the descending pain 
inhibition system in individuals with chronic pain and 
can regulate autonomic activity, which is occasionally 
dysfunctional in these volunteers.21

Another mechanism that may be involved in pain 
control through the use of rTMS is the reversal of 
intracortical disinhibition present in chronic pain.22,23 

The dysfunction of inhibitory circuitry in chronic 
pain is extensively studied.24 However, there have 
been few studies that evaluated GABAergic function 
before and after rTMS treatment.22,23,25-27 The 
inhibitory circuitry can be assessed through paired-
pulse transcranial magnetic stimulation-evoked 
potentials in the primary motor cortex, recorded by 
surface electromyography in the target muscle (TMS-
EMG).28 Using this assessment technique, it has been 
demonstrated that the reduction in pain intensity after 
rTMS is associated with an increase in intracortical 
inhibition.23 The disadvantage of TMS-EMG is that its 
assessment is limited to the motor cortex.29 Therefore, 
assessments using electroencephalography (EEG) can 
aid in building knowledge about the phenomenon of 
intracortical disinhibition in other brain regions.30

EEG data demonstrate a characteristic pattern in 
volunteers with chronic pain, including an increase 
in power density in the theta frequency band and 
a decrease in the response of evoked potentials.31 
The increase in power density in the theta band 
has been associated with a mechanism known as 
thalamocortical dysrhythmia, where the lack of 
effective modulation from the cortex to the thalamus 
leads to lower electroencephalographic frequencies 
becoming predominant in the brains of individuals 
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with a range of neuropsychiatric dysfunctions, 
including chronic pain.32-35 Studies of connectivity 
using EEG also demonstrate abnormalities in 
different pain conditions. Nickel et al. (2020) 
showed abnormal connectivity in the alpha and 
beta bands in the sensorimotor cortex of individuals 
subjected to experimental acute pain36 and Dinh et 
al. (2019) in gamma band connectivity in individuals 
with chronic pain.37 Both these findings and the 
possible presence of thalamocortical dysrhythmia 
point to a dysfunction in the activity of GABAergic 
interneurons38,39, which appears to be a key factor 
in the central mechanisms associated with chronic 
pain.40 There are still a few studies that assess 
changes in power density and connectivity with EEG 
before and after rTMS, which would be essential 
to better understand the plastic changes resulting 
from pain and the mechanisms of neuromodulation. 
Despite the need for further research, there is an 
association between increased alpha power density 
and decreased pain intensity after rTMS.41-43

In this regard, this project aims to address two 
important gaps in the management of chronic 
pain: 1) assess the safety and effectiveness of an 
accelerated TBS protocol in controlling pain in 
individuals with chronic musculoskeletal pain; 2) 
conduct neurophysiological measures to understand 
the neuroplastic mechanisms associated with 
the accelerated TBS protocol in the treatment of 
individuals with chronic musculoskeletal pain.

2. Hypothesis

It is hypothesized that TBS treatment in individuals 
with chronic musculoskeletal pain will be effective in 
pain control. Through EEG assessment, individuals 
with chronic pain are expected to exhibit increased 
theta activity at baseline, and after treatment, there 
will be an increase in alpha density associated with 
a decrease in pain intensity. This post-treatment 
alteration will be present in central and frontal regions.

3. Objectives

3.1 Primary objective

To assess the efficacy and safety of an accelerated 
TBS protocol in controlling pain in individuals with 
chronic musculoskeletal pain.

3.2 Secondary objective

To conduct an exploratory study of different EEG 
oscillations before and after TBS treatment.

3.3 Specific objectives

a) To verify if there is a correlation between time 
since pain, distribution, and intensity of pain with 
EEG oscillation and connectivity measures assessed 
through EEG. b) To investigate whether pain control 
through TBS is accompanied by changes in brain 
oscillation and connectivity measures assessed 
through EEG. c) To evaluate the effectiveness of an 
accelerated TBS protocol on pressure pain threshold. 
d) To identify biomarkers for responders and non-
responders to the accelerated TBS protocol proposed 
in this study.

4. Materials and methods

This is a phase-one, randomized, double-blind clinical 
trial with a two-stage crossover design, registered 
at REBEC on 19/09/2024 (RBR-4mzhbd3) under 
UTN U1111-1306-2836. Individuals with chronic 
musculoskeletal pain will be personally invited by 
the authors. The study will take place at the Instituto 
Multidisciplinar de Reabilitação e Saúde (IMRS) at the 
Universidade Federal da Bahia (UFBA).

4.1 Ethical considerations

This study was approved by the Research Ethics 
Committee of the Universidade Federal da Bahia 
(CAAE: 59546822.5.0000.5531). All participants will be 
fully informed about the study objectives, procedures, 
potential risks, and benefits prior to participation. 
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Each participant will sign a detailed Informed Consent 
Form (ICF), clearly outlining the study steps, potential 
discomforts (such as fatigue or emotional distress 
from questionnaires, minor discomfort from EEG or 
TMS), and their right to withdraw consent at any time 
without affecting their medical care or treatment.

Confidentiality will be strictly maintained. Data 
collected will be anonymized, securely stored, 
and used exclusively for academic and scientific 
purposes, following Brazilian regulations (Resolution 
Nº 466/12, National Health Council44). Data will be 
archived by the principal investigator for five years 
after the completion of the study, after which it will be 
destroyed. Participants will be provided with contact 
details for the Ethics Committee at the Universidade 
Federal da Bahia should they have any ethical 
concerns or complaints regarding their participation.

Participants will be informed about all potential 
adverse effects and the steps that will be taken to 
manage any possible medical emergencies, including 
specialized medical referral if necessary. They will also 
have the option to authorize or deny the use of their 
data for future research, with clear communication 
preferences indicated within the consent form.

4.2 Subjects

A total of 25 adult participants (age > 18 years) 
with chronic musculoskeletal pain, diagnosed by a 
specialist physician for at least three months, and with 
a pain intensity greater than 4/10 on the numerical 
rating scale (NRS) will be included. Participants may 
have pain from various etiologies and distributions, 
including low back pain, neck pain, epicondylitis, 
knee pain, shoulder pain, hip pain, and hand pain. 
Exclusion criteria include: 1) Contraindications for 
TMS use - presence of metal in the skull or implanted 
devices, history of epilepsy, pregnancy, brain 
trauma or surgery, intracranial hypertension, and 
complications related to exposure to magnetic fields 
(TMS or magnetic resonance imaging). 2) History 
of substance abuse; 3) Inability to comprehend 
the assessment tools used even after extensive 
explanation. Participants will be excluded if they 
have: 1) A Diagnosis of fibromyalgia and migraine; 2) 
More than 20% of EEG channels requiring rejection 
due to artifacts; 3) Change in their pharmacological or 
non-pharmacological treatment regimen during the 
study. The use of drugs that may interfere with cortical 
electrical activity (anticonvulsants, antidepressants, 

and antipsychotics) will be controlled and should 
remain unchanged throughout the study; 4) Fail to 
attend or undergo treatment interventions for more 
than 50% of the total scheduled sessions. In cases of 
exclusion based on reasons 2 and 3, individual data 
will be treated using Intention to Treat Analysis (ITT).

The sample size was defined based on previous 
neuromodulation studies for chronic pain. Early-
phase clinical trials involving rTMS and TBS commonly 
use sample sizes ranging between 20 and 30 
participants per group to preliminarily evaluate safety 
and efficacy. Therefore, a total of 25 participants 
were chosen considering established guidelines 
for neuromodulation studies1, ensuring adequate 
statistical power even considering possible losses 
during follow-up.

4.3 Intervention

Initially, individuals will be recruited, and questions 
related to inclusion and exclusion criteria will be asked. 
Individuals who agree to participate will be allocated 
to two different treatment groups randomly (using 
www.randomizer.org). The individual responsible for 
randomization will have no other role in the study. To 
ensure allocation concealment, information regarding 
the group that participants will be assigned to will 
be placed inside a brown envelope. Each envelope 
will only be opened on the first treatment day, in 
the presence of the participant and the therapist 
responsible for TBS. Both the participants and the 
evaluators of clinical and physical measures will be 
blinded to the type of TBS, whether active or sham.

The Intervention group will undergo active accelerated 
TBS first, which consists of four stimulations on 
the same day with a 10-minute interval between 
stimulations. Each TBS stimulation consists of pulse 
trains applied at 50Hz and modulated at 5Hz in time. 
A total of 600 pulses will be applied at an intensity 
of 80% of the resting motor threshold (RMT) over 
the left DLPFC. For this purpose, a cooled figure-
eight coil (Neuro-MS, Russia) will be used, and each 
application will last for a total of three minutes. The 
Sham group will undergo Sham accelerated TBS first. 
For Sham TBS simulation, the coil will be positioned 
on the individual's head in the same target as in 
the Intervention Group, but no stimulation will be 
applied. To maintain the treatment illusion, the 
coil will be placed upright on the volunteer's head, 
without contact with the region of the coil that 
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provides the stimulus; nevertheless, the individual 
will hear the sound of TBS for three minutes. In 
total, four three-minute sham stimulations will be 
performed with a 10-minute interval between them. 
The washout period will be at least one week and a 
maximum of two weeks. All research participants will 
undergo both active and sham treatment conditions 
in different orders.

4.4 Assessment: clinical measures

The evaluation will be conducted by the same 
professional in all stages, who will be trained and 
blinded to the group to which the participant was 
assigned. Initially, socio-demographic and clinical 
data will be collected from participants through 
a semi-structured questionnaire prepared by 
the authors, including identification and contact 
information, ethnicity, marital status, education, 
occupation, family income, government benefits, 
and health status. The scales and questionnaires 
used in this study adhere to the recommendations of 
the IMMPACT, in which pain specialists recommend 
which outcomes and tools should be present in 
clinical trials involving individuals with pain. The 
assessment battery will consist of:

1) Evaluation of pain intensity using the Numerical 
Rating Scale (NRS).45 The NRS is a validated and widely 
used assessment tool. The participant is verbally 
asked to choose a number from zero to ten. The 
chosen number represents a "score" that reflects the 
individual's pain intensity, with zero representing "no 
pain" and ten representing the "worst imaginable 
pain." The NRS will be assessed before and after 
each TBS stimulation, meaning there will be five 
measurements per treatment day, regardless of 
the type of stimulation, whether active or sham. A 
follow-up measurement will be conducted 24 and 48 
hours after each intervention day through telephone 
contact, using the NRS. Pain intensity will be the 
primary outcome of the study.

2) The assessment of pain distribution, intensity, and 
impact will be conducted using the Brief Pain Inventory 
(BPI).46 This is a self-administered questionnaire 
consisting of nine items related to pain intensity and 
location, effectiveness of therapies used for pain, and 
the impact of pain on the individual's life (general 

activities, mood, ability to walk, work, relationships, 
sleep, and ability to enjoy life).46 

3) Pain quality will be assessed using the short form of 
the McGill Pain Questionnaire (SF-McGill).47 Proposed 
by Melzack in 1975, the McGill Pain Questionnaire is 
a tool designed to quantitatively assess the affective, 
motivational, and evaluative components of pain. In 
this study, the Brazilian version of the questionnaire 
will be used47, consisting of 78 words organized into 
4 groups and 20 subgroups. Each group is related to 
a component of pain. The sensory group comprises 
subgroups 1 to 10, the affective group contains 
subgroups 11 to 15, subgroup 16 belongs to the 
evaluative category, and the miscellaneous group 
encompasses subgroups 17 to 20 volunteers will be 
instructed to indicate zero or one word from each 
subgroup that most accurately describes their pain. 
The measurements will be obtained from the pain 
rating index and the number of chosen words.

4) Type of pain, classified as nociceptive, neuropathic, 
or mixed, will be assessed using the Brazilian versions 
of neuropathic pain questionnaires, including the 
Douleur Neuropathique 4 (DN4) to exclude the 
presence of neuropathic pain.48

5) The assessment of central sensitization will be 
performed using the Central Sensitization Inventory 
(CSI).49 The questionnaire consists of two parts. The 
first part (Part A) comprises 25 questions on a five-
point scale (0-never, 1-rarely, 2-sometimes, 3-often, 
4-always), where the scores are cumulative and range 
from 0 to 100. The cutoff point for the questionnaire 
is 40 points, and higher scores indicate more 
severe symptoms.50,51 Part B consists of additional 
information regarding previous medical diagnoses. 

6) Anxiety and depression will be assessed using the 
Hospital Anxiety and Depression Scale (HAD).52 The 
scale consists of 14 items, which are divided into seven 
questions for assessing anxiety and seven questions 
for assessing depression. The total score ranges from 0 
to 21 for each section. A score less than eight indicates 
the absence of anxiety and/or depression, a score of 8 
to 10 suggests the possibility of a disorder, and a score 
greater than 10 indicates it is highly likely that anxiety 
and/or depression are present.
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7) The safety of TBS treatment in individuals with pain 
will be assessed through a questionnaire containing 
the main adverse effects reported in the literature. The 
questionnaire will be administered at the end of the 
active or SHAM treatment protocols. Additionally, any 
spontaneous statements from research participants 
will be recorded.

8) To assess volunteer satisfaction or their perception 
of improvement after treatment, the Brazilian version 
of the Patient Global Impression of Change (PGIC) 
scale will be used.53

The BPI, HAD, SF-McGill, and CSI will be administered 
immediately before both active and sham 
interventions to categorize participants and evaluate 
potential carry-over effects from the first intervention. 
The adverse effects questionnaire and PGIC will be 
administered at the end of each treatment protocol, 
alongside the blinding assessment.

4.5 Neurophysiological measurement

Quantitative EEG data will be acquired using a 
64-channel cap following the 10/20 international 
system. The data will be recorded at a 1000 Hz 
sampling rate and referenced to the Cz electrode. 
Impedances will be kept below 50 kΩ. Participants will 
remain seated in a relaxed posture with eyes closed 
for five minutes during each recording session. The 
environment will be illuminated and noise-free. 
Data will be extracted, preprocessed, and analyzed 
using the EEGLab software and MATLAB, estimating 
power in the alpha, beta, delta, and theta bands, as 
well as connectivity data. The EEG assessment will be 
conducted at two different time points, both in the 
active and SHAM conditions, immediately before and 
after the treatment protocol.

For EEG data preprocessing, the signals will be 
offline band-pass filtered between 0.5 and 45Hz. 
The data will be segmented into 2-second epochs. 
EEG artifacts with amplitudes below -750μV and 
above 750μV will be rejected using a semi-automatic 
protocol. EEG data with more than 33% of rejected 
epochs will be excluded from the analysis. After 
the artifact rejection protocol, all EEG data will be 
adjusted to have the same number of epochs. Power 
density will be calculated by performing the Fast 
Fourier Transform on each epoch and electrode for 
each participant. The average power densities will 
be grouped into frequency bands: delta (1.2-3.5Hz), 

theta (4–7Hz), alpha (8–12Hz), beta1 (13–20Hz), beta2 
(20-30Hz), gamma1 (30-48Hz), gamma2 (52-70Hz). 
Regions of interest for analysis will be defined by 
averaging power densities across electrode groups: 
frontal, central, parietal, temporal, and occipital. After 
obtaining absolute power densities, relative power 
density will be calculated by dividing the value of each 
electrode in each frequency band by its total value in 
the power spectrum.

Functional connectivity will be assessed using 
the Phase Lag Index (PLI), which reduces volume-
conduction artifacts and measures the consistency 
of phase differences between electrode pairs across 
trials. This metric will be applied to all pairs of 
electrodes across each frequency band. We will also 
calculate Small-World Parameters (SWP) to assess the 
efficiency of brain networks. These metrics include: 
Clustering coefficient (measures local connectivity); 
Global efficiency (reflects the ease of information 
flow across the network); Characteristic path length 
(indicates network integration). The Standardized 
Low-Resolution Brain Electromagnetic Tomography 
(sLORETA) method will be used to estimate the 
sources of EEG activity. This technique will help 
identify the brain regions most involved in treatment 
effects and neuroplastic changes.

4.6 Physical assessment

The pressure pain threshold (PPT) will be evaluated 
using a pressure algometer.54 The evaluator will 
apply increasing pressure with the algometer, 
perpendicular to the skin, on the area identified by 
the volunteer as the site of worst pain. The volunteer 
will be instructed to say "stop" when the sensation 
of pressure becomes painful.55 At that point, the 
pressure value will be recorded, and the test will be 
concluded. The PPT will be measured immediately 
before treatment, between the second and third 
active rTMS or sham stimulation, and immediately 
after the completion of the treatment protocol, 
resulting in three PPT measurements per treatment 
day for a total of six measurements.

4.7 Data analysis

Continuous descriptive data will be summarized 
using means and standard deviations (for normally 
distributed data) or medians and interquartile 
ranges (for non-normally distributed data). Normality 
will be assessed using the Shapiro-Wilk test.  
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Categorical variables will be reported as frequencies 
and percentages. Group comparisons will be 
performed using analysis of variance (ANOVA), 
followed by post-hoc tests with Bonferroni 
correction to control for multiple comparisons. When 
assumptions for parametric tests are not met, non-
parametric alternatives (such as the Kruskal-Wallis 
test) will be applied. Correlations between clinical 
outcomes (e.g., pain intensity) and EEG measures will 
be tested using Pearson's or Spearman's correlation 
coefficients, depending on data distribution. Statistical 
significance will be set at p < 0.05.

Given the crossover design, it is critical to control 
for carry-over effects between the active and sham 
conditions. A washout period of at least one week 
(maximum of two weeks) will be implemented to 
minimize residual effects, following evidence from 
previous studies showing that neuromodulation 
effects typically dissipate within this period. To 
detect potential carry-over effects, baseline values 
(e.g., NRS scores and EEG data) will be compared 
across the two phases. If significant differences are 
found between the baselines of the first and second 
phases, a carry-over effect will be suspected. In 
such cases, ANOVA with the treatment order as a 
covariate will be employed to adjust the analysis. 
Additionally, exploratory subgroup analyses will 
compare participants starting with sham versus active 
treatment. If interaction effects between treatment 
order and outcomes are detected, further post-hoc 
analyses will be conducted to isolate the source of the 
effect. All statistical analyses will be performed using 
SPSS version 20.0.

5. Results

Accelerated TBS is expected to significantly reduce 
pain intensity, demonstrating superior effectiveness 
compared to SHAM stimulation. Additionally, it 
is anticipated that the analgesic effects of active 
stimulation will be cumulative across sessions 
performed on the same day. EEG data are expected 
to show increased alpha power density and 
decreased theta activity following active stimulation. 
Finally, an increase in pressure pain thresholds is also 
anticipated after the active intervention.

6. Discussion

This is an innovative study, as, to our knowledge, no 
published articles have explored accelerated rTMS 
protocols in individuals with chronic pain, nor TBS in 
musculoskeletal chronic pain - only in experimental 
pain.17,56 In depression studies, accelerated rTMS 
protocols achieved outcomes comparable to 
traditional protocols but in a much shorter time.57 
The accelerated TBS protocol has the potential to 
bring significant clinical impact to the management 
of chronic pain by offering a more efficient and less 
burdensome alternative to conventional treatments. 
Chronic pain management typically requires repeated 
interventions and extended visits to specialized 
centers, creating logistical challenges for many 
patients, particularly those with limited mobility or 
restricted access to healthcare services.

If proven effective, the reduction in the number 
of treatment days achieved with the accelerated 
protocol would alleviate the burden on healthcare 
systems and improve patient adherence and 
quality of life. Compared to traditional rTMS 
protocols, which involve daily sessions for one 
to two weeks, performing multiple sessions in a 
single day presents a more practical approach 
for patients and healthcare providers.57 From an 
economic standpoint, the accelerated protocol has 
the potential to lower the costs associated with 
chronic pain management, which often involves 
long-term medication use and non-pharmacological 
treatments.58,59 The introduction of this protocol 
could also expand the clinical applicability of 
neuromodulation, making it a more viable option 
in public health settings and facilities managing 
large patient volumes. Individuals with chronic pain 
also frequently suffer from comorbidities such as 
anxiety and depression, increasing the complexity 
and cost of care.60 The use of TBS targeting the 
dorsolateral prefrontal cortex (DLPFC) may not 
only relieve pain but also alleviate emotional 
symptoms.61 Although the current study focuses on 
a single day of treatment, its results could provide 
preliminary evidence to support future studies with 
longer treatment durations, multiple sessions per 
day, and long-term follow-up, aligning more closely 
with protocols used in depression research.57  
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The proposed protocol includes four sessions of TBS, 
delivering 600 pulses per session. According to the 
most accepted definition of accelerated protocols, 
more than one rTMS session per day should be 
performed on the same target, with a dose exceeding 
that of the classical treatment.11 Classical intermittent 
TBS delivers 600 pulses, with extended or prolonged 
protocols reaching up to 1800 pulses.12,62 In this 
study, participants will receive a total of 2400 pulses 
across four sessions, exceeding even the pulse 
count of extended protocols. Although no minimum 
number of rTMS sessions has been established for 
treating chronic musculoskeletal pain, at least four 
sessions have been suggested for neuropathic 
pain.63 The DLPFC target was chosen because it is 
the most studied in accelerated rTMS protocols and 
has been proven safe in individuals with mental 
health disorders.11,63,64 However, the analgesic effect 
may be smaller than if the primary motor cortex had 
been targeted.2 

Nevertheless, the researchers are also interested 
in contributing to the understanding of the DLPFC’s 
role in treating chronic pain, especially through 
the EEG measures. Alterations in power density 
are well described in the chronic pain literature, as 
increases in theta and beta activity, and a reduction 
in alpha power.65 Connectivity analyses offer crucial 
insights into neuroplastic changes induced by pain, 
revealing heightened connectivity within the pain 
network, especially in the prefrontal cortex, insula, 
and anterior cingulate cortex, through coherence 
and phase-based measures.66 Additionally, studies 
on Small-World Network properties in chronic 
pain populations report reduced modularity and 
longer path lengths, reflecting a less efficient 
network organization, which may contribute to the 
persistence and resistance to treatment.67 However, 
research in this area remains limited. These metrics 
could also help predict which participants are most 
likely to benefit from the intervention, identifying 
neurophysiological biomarkers and open new 
avenues for research on personalized treatment 
approaches.68,69 This would optimize clinical practice 
by avoiding prolonged therapies for non-responders, 
enhancing the efficiency of care.

The main limitations of this study are likely related to 
the sample size and short follow-up period. Although 
no sample size calculation was performed, we 
followed the guideline that neuromodulation clinical 
trials with 25 participants per arm are considered 
Class I studies.1 Regarding the short follow-up, while it 
is sufficient for a phase-one study, the results cannot 
be extrapolated to longer follow-up periods. 

7. Conclusion

In conclusion, this study represents an initial step 
toward applying accelerated protocols in individuals 
with chronic pain and will provide valuable insights 
into the neuroplastic changes associated with pain 
and the mechanisms involved in its treatment. 
Assessing the feasibility and safety of this technique 
is essential to guide future large-scale clinical trials.
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